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Abstract 

Parastatisfics (parafields) has been used in relation to several models of physical systems 
like the quark and the nuclear shell models. However, the physics of parafields is not 
completely clear. If classical para-Bose or para-Fermi variables could be constructed, then 
because of the correspondence principle some traces of the corresponding quantum 
properties could be found at the classical limit. In this way, by studying the simplest 
c-number systems some hints for the quantum of parafields could be expected. 

We introduce and discuss classical paravariables. We construct c-number para-Fermi 
variables in terms of coupled classical oscillators. Several similarities to the corresponding 
quantum case are observed. The results support Cusson's remark that systems described 
in terms of parastatistics may really be composite systems. 

1. Introduction 

Parafields, i.e., fields obeying Green 's  commuta t ion  relations (Green, 
1953; Greenberg  & Messiah, 1965), have been used in relation to several 
models o f  physical systems: (I) The quark model (Greenberg, 1964; 
Morpurgo ,  1970); (2) The nuclear pairing force model for a single j-shell 
(Cusson, 1969); (3) Spin-�89 oscillators with spin-orbit interaction (Cusson, 
1969). The statistics o f  a system described in terms of  parafields is called 
parastatistics. Parafields are classified as para-Bose or  para-Fermi fields. 
The relations 

+ + + 

[[ai,op, a j , j + ,  ak,op]_ = 2~kj at,op (I. I a) 

I[a~.op, aj,op]• ak,op]- = 0 (1. lb)  

define the Green algebra of  Dara-Bose variables,+ for the upper  sign and 
para-Fermi  variables for the lower. Bose (Fermi) variables are particular 
cases of  para-Bose and para-Fermi  variables, respectively. 

t We use the word variable to encompass both the variables a~ with discrete i and the 
field variables. 
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In spite of the above examples and the study of its general properties, the 
physics ofparastatistics in quantum field theory is by no means transparent. 
On the other hand, because of the correspondence principle, some traces of 
the physics ofparafields can be suspected in the classical limit. In such a case 
they could be used as hints for the quantum case. That  is why we consider 
it worthwhile to study the classical analogues of paravariables, and the 
purpose of the present paper is to make the first step in this direction. 

2. Resumd of Brackets and Quantisation 

The classical brackets 
Og Oh 8g ~h 

{g,h}v ~qk-~pkq:OpkOqk (2.1) 

or :~Poisson brackets are to be used in the quantisation rule when the phase 
space variables ql and Pl = OL/O(h are independent. The +Poisson bracket 
was introduced by Droz-Vincent (1966) under a more general expression. 
In terms of these brackets classical mechanics can be formulated (Droz- 
Vincent, 1966; Franke & K~lnay, 1970) so that the balance between 
antisymmetric ( - )  and symmetric (+) formalism is the same for the classical 
as for the quantum case (bosons and fermions). 

Let us consider now those systems (such as the gravitationalfield and the 
field of the relativistic electron) whose phase space variables are not all 
independent (phase space constraints). There exists a subset of these 
systems such that for the quantisation rule the qzDirae brackets 

{g, h}* = {g, h}~ - ~ {g, 0"}~ c~b{O b, h}~ (2.2) 
a,b 

(Dirac, 1950, 1964; Franke & K~ilnay, 1970) should be used instead of the 
:FPoisson brackets. Otherwise contradictions arise. In equation (2.2) the set 
of the O"(q,p), which are constraints, 

0" ~ 0 (2.3) 

is a maximal subset of all the phase space constraints.:~ The maximality 
refers to the requirement that the matrix {0",0~}v be non-singular. The 
inverse matrix equals c~b. Such 0~-s are called irreducible q:second-ctass 
constraints. The sets of the (- )  and the (+) second-class constraints may be 
different. When no information on the existence (or not) of zFsecond-class 
constraints is given, we denote the qzPoisson bracket or the TDirac bracket 
by 

according to which should be used. 
One of the reasons for introducing the symmetric brackets { }~+ was to put 

on an equal footing the quantisation of Bose and Fermi systems (Droz- 

:~ The weak equality ~ has the sense explained by Dirar (1950, 1964). 
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Vincent, 1966; Franke & Kfilnay, 1970; K~ilnay & Ruggeri, 1972; K~ilnay, to 
be published). Considering all the cases, the quantisation rule reads for 
boson (upper sign) or Fermi (lower sign) systems, 

~:;{ , }~ -~ [ , 3~, ~:_ = i ,  ~:+ = s r ( 2 . 4 )  

where ~: is the parameter studied by K~ilnay & Ruggeri (1972). 

3. Classical Paravariables 

3.1. General 

Let a~ and their complex conjugates a~ be dynamical variables of a 
classical system. Let {, }~ and {, }s_+, be • or Dirac brackets 
according to the absence or existence of • constraints. Taking 
into account the quantisation rule (2.4) it follows that 

{{c7i, aj}Z+_, ak}Z_ ' = -2K:t 3ik aj 

"tB B' ({ai, a j, +, ak}_ = 0 
- - B B '  {{at, a j}+, ak}- = 0 

K_+ = - i ~ +  - l ,  i.e. K+= - i~ -1, K_ = -1  

a possible classical partner 

({9i, aj}~, c~k}s_ ' = 2K+_ S~j Oi (3.1. la) 

(3.1.1b) 

(3.1.1c) 

(3.1.1d) 

(3.1.1e) 
of equations (1.1) and their hermitian a s  

conjugates.]" We call, respectively, a~, c7~ para-Bose (para-Fermi) variables 
in the case of  upper (+) and lower ( - )  signs. Of course, the terminology is 
formal, since it only regards the algebraic structure of equations (1.1) and 
(3.1.1) and has nothing to do with occupation numbers. 

Note that in the para-Fermi case B'  = B is the only possibility. 

3.2. Remarks 

(A) In the classical limit a system may be simultaneously Bose-like and 
Fermi-like~ (see Droz-Vincent, 1966; Franke & K~ilnay, 1970; K~ilnay, to 
be published). However, i f  the c-number system is described in a quantum- 
like language, different quantum-like languages (such as Bose-like and Fermi- 
like) should be carefully distinguished in order to avoid inconsistencies. 
Example: In classical mechanics a B* algebraw can be introduced with a 

t Equations (3.1.1 a) and (3.1.1 c) correspond to equations (1.1). Equations (3.1.1 b) and 
(3.1.1d) correspond to the hermitian conjugates of equations (1.1) and can be deduced 
from equations (3.1.1a) and (3.1.1c) if {g,h}~: = {~,h}~; moreover, ~ must then be real. 
However, when working with complex variables, important cases appear [as, for example, 
the Dirac field (Kfilnay, to be published)] where the distributivity of complex conjugation 
on Dirac brackets is violated without introducing inconsistencies in the formalism. 

5~ This is not strange: different sequences in, e.g., the real plane can have as their limit 
one and the same point. 

w For the terminology see, e.g., Rickarts (1960). A B* algebra is an abstract C* algebra 
which, in turn, is the algebra of quantum mechanics. 



418 A.J. K,~LNAY 

*product (cf. Alonso, K~ilnay & Mujica, 1970; K~ilnay, Alonso, Franke 
& Mujica, to be submitted for publication) such that 

i3 t j  = i{at ,  a j }  B _ ~ at * ~ - (Is * at (3.2.ta) 

0 = i{at ,  a j }  B _ = ai * a t  - a j  * at ,  etc. (3.2. l b) 

The algebra is associative. Similarly, another B* algebra with an associative 
product *' can be defined such that 

~3,j = ~{a~, as)~' = ai *' as + aj *' a~ (3.2.2a) 

0 = ~:{ai, a~.}~_' = ai *' aj + a s *' a~, etc. (3.2.2b) 

For both algebras the involution is the complex conjugation. The classical 
system can be described in terms of any of these algebras: they offer two 
languages for one physical system. However, if both languages are confused 
by considering them as identical, 

, == , t  

then it can be shown that contradiction arises. 
(B) For similar reasons, different parastatistics-like descriptions of a 

c-number system (such as para-Bose-like and para-Fermi-like) cannot be 
mixed unless specifically proved that the mixing can be done consistently. 
If this happens, probably it is because the same happens at the quantum 
level (cf. Section 4.3). 

(C) Again for similar reasons, if, for example, a Bose-like description 
[equations (3.2.1)] is used for the classical system, then the expression 

G =aCat * at + as* at 

with the *product induced through equations (3.2.1) should generally be 
used instead of 

(~ B" G = ~+{ai,  j}+ 
for the classical analogue of the quantum relation 

+ + 

Gop = at ,op aj ,op + at  .op at ,op 

Exceptions may arise, but their legitimacy should be proved in each case. 
(D) Similar care must be taken for parastatistics-like descriptions of a 

c-number system. If trilinear bracket expressions [like those of equations 
(3.1.1)] are used for a c-number system as classical analogues of quantum 
trilinear commutator expressions [like those of equations (1.1)], then the 
bilinear bracket expression 

k~ = d, ~:__{g, h}~" 

cannot be used as the classical analogue of 

k~_,op = ~S[gop, hop]~ 

unless specifically proved that this can be done. 



PARASTATISTICS AND DIRAC BRACKETS 419 

(E) It is easy to get contradictions in the classical limit i f  remarks A -D  are 
not taken into account, specially for para-Bose or para-Fermi classical 
variables. 

(F) The irreducible representations of a quantum para-Bose or para- 
Fermi algebra with unique vacuum state [0) are known to be labelled by a 
natural numberp = 1,2, 3, ... (the order of parastatistics) which is such that 

+ 

a~,op aj,op [0~ = P~lj [0~ (3.2.3) 
+ 

This involves not only the operators a~,o,, aj,op but also the Fock state vector 
space. Consequently, the order of parastatistics seems not to be easily 
translated to the classical limit. However, a first step will be shown in 
Section 4.3. 

4. An Example of c-Number para-Fermi Variables 

4.1. Results of  Previous Work 
In a paper by K~ilnay & Ruggeri (1972) the Lagrangian-~ 

L~,(b,b) = ~ [bArg'Xn(~')b,r- (1/2)~o, bA~crA, b , , ] -  O~(b) (4.1.1) 
A,B,r 

was studied. Here 
A,B = l, II, r , s= 1,2 . . . . .  N 

bl, = br ,  bll, = b, (4.1.2) 

are the Configuration (complex) co-ordinates and the only non-zero matrix 
elements of a and ~'(~') are 

O'lll = O'11 i -~- 1, Cr~,i(~') = (~' -- i)/2, cr[x~(~') = (~' + i)/2 (4.1.3) 

The o~, are real constants and ~" is an arbitrary non-zero complex parameter. 
It was shown that the physical system described by the Lagrangian (4.1.1) 
has the following properties: 

(i) Phase space constraints exist, Dirac's generalisation of Hamiltonian 
mechanics applies and Dirac brackets must be used for the quanti- 
sation. 

(ii) The system is a set of coupled oscillators of frequencies to,::~ 

br = ioJ, b, + iOY/lOb, (4.1.4) 

(iii) The +Dirac bracket of dynamical variables was computed. For 
g(b,b) h(b,b) which are only functions of  the configuration variables, 
equation (3.13) of K~,lnay & Ruggeri (1972) implies 

{g,h}~'~ = ~,-1 ~ (Og/ObM,~)(rMM,(Oh/Ob~t,~) (4.1.5) 
MM~m 

t Because of the Bose language we shall use later on, here we denote by ba, the variables 
which by K~.lnay & Ruggeri (1972) were called aa,. 

The sum convention is nowhere used. 
27 
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In particular, the equalities 

~ { b . -  * ' b~}+ = St, (4.1.6a) 

~ ' { b . , b A ~ ; =  ' " * {b,b~}+ = 0 (4.1.6b) 

show the system as a formal classical limit of a quantum Fermi 
system. [Cf. equation (2.4), with ~:" = ~:.] 

(iv) It was mentioned that the same system is a formal classical limit of a 
quantum Bose system. 

4.2. The para-Fermi Example 
The construction starts from remark (iv) so that first of aI1 we put it into 

an explicit form. In the same wayas was done by K~ilnay & Ruggeri (1972) 
for the plus Dirac brackets, we now compute the minus Dirac brackets of 
functions g(b, b), h(b, b) of configuration space variables. The result is 

{g, h}* = - i  E (ag/abMm) ev,~MM,(ah/abM,m) 
M~a'm 

tn particular, 

i.e., 

q = + I ,  ell = - I  

{bar, bs~'} *- -- -i~R %s 8,.~ 

(4.2.1) 

(4.2.2) 

i{br, b~}* = 8r~ (4.2.3a) 

;{br,  b~}_* = i { g ,  bs}_* = 0 ( 4 . 2 . 3 b )  

By comparison with equations (2.4) we see that equations (4.2.3) are the 
classical partners of the quantum Bose commutation relations. 

We stress remark D of Section 3.2 in order to avoid misunderstandings 
and inconsistencies. The system governed by the Lagrangian (4.1.1) is the 
classical limit of Bose and Fermi systems but, whenever quantum analogues 
are looked for at the classical level, one cannot use Bose-like and Fermi-like 
descriptions simultaneously. K~iinay & Ruggeri (1972) described the classical 
system in terms of the classical limit of a Fermi language. In the present 
paper the same system will be described in terms of  the classical Hmit of  a Bose 
language and we should not mix both languages. 

The reason why we need a Bose-like description of the classical system 
(4.1.1), while our purpose is to look for para-Fermi variables, is the 
following. In the quantum cases it was shown (Kademova, 1970a; 
Kademova & K~ilnay, 1970; K~lnay, Mac Cotrina & Kademova, to be 
published; Kzilnay & Kademova, to be submitted for publication) that 
pars-Fermi operators can be realised in terms of polynomials of Bose 
operators. We ask if such a result can be translated to the c-number level. 
If  we are lucky, then this would solve the problem of the construction of 
classical para-Fermi variables and its properties could be studied in the 
easiest classical limit. 
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Lemma: Let ~ ,  i = !, 2, 3, . . . ,  be N • N matrices and define 

N 

a~'(b, b) E ' -  = c% b, b, (4.2.4) 
r , s =  i 

Then 
N 

{A~',A~'}*=~'+ -~ ~ ([~',cd]• ~: '~-i ,~:+=~: '  (4.2.5) 
r , s - -  [ 

Proof: Use equations (4.1.5) and (4.2.1). 
The Lemma resembles the Proposi t ion 2 of  Kademova  (1970b) which 
stands for the quantum case. 

In what  follows we choose N = 2 "~, M = 1, 2, 3 . . . .  
+ 

Let  Fi, i = 1,2, . . . ,  M be N • N matrices and F~ their hermit ian conjugates 
which span a Fermi algebra 

+ 

[F,, F~.]+ = 8o.I (4.2.6a) 
+ + 

[F~, Fj]+ = [F,, F~]+ = 0 (4.2.6b) 

For  definiteness, we can use the Fermi matrices given by Kademova  & 
K~lnay (1970) for  the finite case and the matrices in t roduced by KS.lnay, 
Mac Cotr ina & Kademova  (to be published) for  the infinite case. We define 

fdb,  b) = AV*(b, b), i = 1,2, . . . ,  M (4.2.7) 
i.e., 

N 

f~ = ~ (FiLsb, b, (4.2.8a) 
e ,S=  | 

N + 

f~ -- 2 (F0,s br b~, i = 1 ,2 , . . . ,  M (4.2.8b) 
r , s = l  

These resemble the quantum formulae.~" (Cf. Kademova,  1970a; Kademova  
& Kfilnay, 1970; K~lnay, Mac Cotr ina & Kademova ,  to be published; 
K~lnay & Kademova ,  to be submitted for  publication.) 

Theorem: The Bose potynomialsf~,~ are c-number para-Fermi variables. 

Proof: Because of  the Lemma,  we have 
+ + 

{{f~,f~}*,fg}*__ = - ~ ([[F,,Fj]_,Fk]_)~,brb, (4.2.9a) 
P$ 

{{f~,./j}~,J~}* = - ~ ([[F, Fj]_,&]_),sb~b, (4.2.9b) 
/'s 

But Fermi matrices are part icular  cases of  para-Fermi matrices (Green,  
1953), so that  equations (1.1) (with the lower sign) hold for them, i.e., 

+ + + 

[[F,, F,]_, Vk]- = 28kj F, (4.2.10a) 

t When comparing with the quantum case it should be remembered that TrF= 0 so 
that non-commutative products of Bose operators do not appear on the quantum analogue 
of equation (4.2.8) (C.f, Lemma A in K~lnay & Mac Cotrina, submitted for publication). 
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so that 

A. J. K ~ L N A Y  

[[F~, Fj]_, F,]_ = 0 (4.2.10b) 

Y * * 
{ t f , ,f~}-,L}- = -28k,f~ (4.2.11 a) 

{{f, fj}_,fg}_ = 0 (4.2.1 lb) 

These are identical to equations (3.1. I a) and (3.1. l c) with the lower sign and 
{, }~ = {, }B.= {, }* [property (i) of Section 4.1]. Equations (3.1.1b) and 
(3.1.1d) are deduced in the same way but by using, instead of equations 
(1.1), their hermitian conjugates. 

Note: The variablesf ,  f ,  are not para-Bose variables. 

Proof: Because of the Lemma the equation 
+ + 

{{f,,fj}*,fk}-= _i~,-1 ~ ([[F,,F31+,Fk]_)r~brbs (4.2.12) 

is obtained. Then by using equation (4.2.6a) it results in 

{{f,  fj}+,fk}- = 0 (4.2.13) 

which contradicts equation (3.1.1a) with the upper sign. []  

4.3. On the Classical Order of Parastatistics 

In remark F of Section 3.2 the difficulties of extending to the classical 
level the order p of parastatistics were briefly discussed. However, for 
p - 1 the situation is simpler because p = 1 para-Fermi statistics is Fermi 
statistics (Green, 1953). This means that the classical limit o f p  = 1 para- 
Fermi statistics should be a system in which equations (4.2.11) should 
co-exist with 

~{,f~,fj}~_ = 8,j (4.3.1a) 

~{f~,fj}+ = f{f~,fj}+ = 0 (4.3.1b) 

[Cf. equation (2.4) and property (i) of Section 4. I.] 

Theorem: The c-number para-Fermi variables f ,  f~ given by equations 
(4.2.8) are also c-number Fermi variables when the underlying Bose system 
is in such a state that 

brb, = 1 (4.3.2) 
r 

and ~' = ~ is used. 

Proof: Use equations (4.2.6), (4.2.8), (2.4) and the Lemma. [] 

Notes: 
(l) It is quite surprising that in the quantum case any irreducible 

representation of the para-Fermi algebra which is also an irreducible 
representation of a Fermi algebra can be realised in the one-particle Bose 
states (Kademova, 1970a; Kademova & K~lnay, 1970; K~lnay, Mac 
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Cotrina & Kademova, to be published; K~ilnay & Kademova, to be 
submitted for publication), i.e. in those quantum Bose states [ ) such that 

+ 

b~,o~br.ooi) = [) (4.3.3) 

which strongly resembles the classical formula (4.3.2). 
(2) However, the resemblance is not complete because of the c-number 

terms which could be added to the right-hand side of equation (4.3.3) by 
simultaneously changing the order of the operators on the left-hand side. 

(3) For an arbitrary state we have (putting ~:' = ~:), 

se{f~,J~}~ ~ 31j ~ br br, ~{f~,fj}; = 0 (4.3.4) 
/, 

That ia why it could be thought that even if equation (4.3.2) is violated, new 
variables 

~bl(b,D)= (~ Drb~)-l/2f~(b,[O (4.3.5) 

could always be introduced such that ~b~, ~ be Fermi variables. However, 
it is easily shown that to require (with ~' = ~) 

= 

leads to contradiction unless in physically uninteresting cases all para- 
Fermi variables equal zero. 

5. Elementarity or Higher Order of para-Fermi Statistics ? 
After considering several quantum parastatistics systems Cusson (1969) 

suggested that ' . . .  paraquanta may represent "composite" particles ... ' .  
Kademova (1970a), Kademova & KMnay (1970), KMnay, Mac Cotrina & 
Kademova (to be punished), KMnay & Kademova (to be submitted for 
publication) have shown that for the quantum case the complete Fock 
space of any irreducible representation of para-Fermi statistics of order 
p of parastatistics can be realised in the Bose-Fock subspace of p bosons. 
With the exception of fermions, all other parafermions require several 
bosons for the above realisation. This seems to confirm Cusson's hypothesis. 

By comparing the above conclusions with the results of Section 4 we see 
that, as suspected in the Introduction, traces (really stronger than could be 
expected) of the physics of paravariables can be found in the classical limit. 
The possible importance of this fact was explained in the Introduction. 

Acknowledgements 
The author is grateful to Professors Abdus Salam and P. Budini, to the International 

Atomic Energy Agency and UNESCO for an Associateship at the International Centre 
for Theoretical Physics, Trieste. He is also indebted to Professor G. Ruggeri for critical 
remarks. 



424 A.J. KALNAY 

References 

Atonso, V., K~flnay, A. J. and Mujica, J. D. (1970). International Journal of  Theoretical 
Physics, Vol. 3, No. 2, p. 165. 

Cusson, R. Y. (1969). Annals of  Physics (N. Y.), 55, 22. 
Dirac, P. A. M. (1950). Canadian Journal of  Mathematics, 2, 129. 
Dirac, P. A. M. (1964). Lectures on Quantum Mechanics. Belfer Graduate School of 

Science, Yeshiva University, New York. 
Droz-Vincent, P. (1966). Annales de l'lnst#ut HenriPoincard, Sec. A, 5, 257. 
Franke, W. H. and K~ilnay, A. J. (1970). Journal of  Mathematical Physics, 11, 1729. 
Green, H. S. (1953). Physical Review, 90, 270. 
Greenberg, O. W. (1964). Physical Review Letters, 13, 598. 
Greenberg, O. W. and Messiah, A. M. L. (1965). Physical Review, 138, B 1 t 55. 
Kademova, K. V. (1970a). International Journal of  Theoretical Physics, Vol. 3, No. 2, 

p. 109. 
Kademova, K. V. (1970b). Nuclear Physics, B15, 350. 
Kademova, K. V. and K~.lnay, A. J. (1970). International Journal of  Theoretical Physics, 

Vol. 3, No. 2, p. 115. 
K~lnay, A. J. and Ruggeri, G. J. (1972). International Journal of  TheoreticalPhysics, 6, 

i67. 
K~Inay, A. J. (to be submitted for publication). 'The electron fietd and the Dirac bracket.' 
K~flnay, A. J., Alonso, V., Franke, W. H. and Mujica, J. D. (to be submitted for publi- 

cation). 'A quantum-like formulation of classical mechanics : I--General Case.' 
Kgtlnay, A. J. and Mac Cotrina, E. (submitted for publication), 'A remark on the ob- 

servables of Fermi systems described in terms of bosons.' 
K/~lnay, A. J. and Kademova, K. V. (to be submitted for publication). 'Observables and 

transformation properties of fermions constructed in terms of bosons.' 
Kgttnay, A. J., Mac Cotrina, E. and Kademova, K. V. (to be published in the International 

Journal of  Theoretical Physics). 'Quantum field theory of fermions constructed from 
bosons. Generalization to parastatistics.' 

Morpurgo, G. (1970). Annual Review of Nuclear Science, 20, 105. 
Rickart, C. E. (1960). General Theory of  Banach Algebras. D. Van Nostrand Company, 

Inc., Princeton, Toronto, London, New York. 


